Detección automática de noticias falsas con un modelo de aprendizaje profundo basado en redes neuronales recurrentes
Loading...
Date
2024-06-27
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de San Martín. Fondo Editorial
Abstract
Detección automática de noticias falsas con un modelo de aprendizaje profundo basado en redes neuronales recurrentes
La detección automática de las noticias falsas es importante para evitar su incremento descontrolado que puede perjudicar la dinámica de las noticias a lo largo del mundo. En el presente trabajo, se propone un enfoque basado en aprendizaje profundo utilizando redes neuronales recurrentes. En este estudio, se utilizó un conjunto de datos compuesto por 20,800 noticias, donde el 80% correspondió a datos de entrenamiento y el 20% restante a datos de prueba. Las noticias se clasificaron en dos categorías: Noticias Falsas y Noticias Verdaderas. Para garantizar un procesamiento eficiente de los datos, se aplicaron técnicas de procesamiento de datos para limpiar y estructurar la información. Se empleó la tecnología de redes neuronales recurrentes LSTM (Long Short-Term Memory), conocida por su capacidad para el procesamiento del lenguaje natural (PLN). Esta arquitectura es adecuada para analizar secuencias de texto y detectar patrones lingüísticos que permitan identificar noticias falsas. Los resultados obtenidos fueron de una exactitud del 97.77% en la clasificación de noticias falsas y verdaderas. Estos resultados fueron posteriormente evaluados utilizando métricas de evaluación estándar, como precisión, exactitud, F1-score, recall, matriz de confusión y curva ROC. Esto respalda la efectividad del modelo en la clasificación precisa de los datos proporcionados, lo que demuestra su capacidad para discernir y categorizar de manera precisa las noticias analizadas.
Automatic detection of fake news with a deep learning model based on recurrent neural networks The automatic detection of fake news is crucial in order to mitigate its proliferation worldwide. In this study, a deep learning approach using recurrent neural networks is proposed. A dataset of 20,800 news articles was utilized, with 80% of the data allocated for training and the remaining 20% for testing. The news articles were classified into two categories: Fake News and True News. To ensure efficient data processing, data preprocessing techniques were employed to clean and structure the information. Long Short-Term Memory (LSTM) recurrent neural networks, renowned for their natural language processing (NLP) capabilities, were employed. This architecture is well-suited for analyzing text sequences and identifying linguistic patterns that aid in fake news detection. The obtained results demonstrated an accuracy of 97.77% in classifying fake and true news articles. These results were subsequently evaluated using standard evaluation metrics, including precision, accuracy, F1-score, recall, confusion matrix, and ROC curve. This affirms the effectiveness of the model in accurately classifying the provided data, showcasing its ability
Automatic detection of fake news with a deep learning model based on recurrent neural networks The automatic detection of fake news is crucial in order to mitigate its proliferation worldwide. In this study, a deep learning approach using recurrent neural networks is proposed. A dataset of 20,800 news articles was utilized, with 80% of the data allocated for training and the remaining 20% for testing. The news articles were classified into two categories: Fake News and True News. To ensure efficient data processing, data preprocessing techniques were employed to clean and structure the information. Long Short-Term Memory (LSTM) recurrent neural networks, renowned for their natural language processing (NLP) capabilities, were employed. This architecture is well-suited for analyzing text sequences and identifying linguistic patterns that aid in fake news detection. The obtained results demonstrated an accuracy of 97.77% in classifying fake and true news articles. These results were subsequently evaluated using standard evaluation metrics, including precision, accuracy, F1-score, recall, confusion matrix, and ROC curve. This affirms the effectiveness of the model in accurately classifying the provided data, showcasing its ability
Description
Keywords
Noticias falsas, Aprendizaje profundo, Redes neuronales recurrentes (RNN), LSTM (Long Short-Term Memory), Procesamiento del lenguaje natural (PLN), Clasificación de noticias
Citation
García-Paredes,D.(2024).Detección automática de noticias falsas con un modelo de aprendizaje profundo basado en redes neuronales recurrentes. Tesis para optar al título profesional de Ingeniero de Sistemas e Informática. Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional de San Martín, Tarapoto, Perú.